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Why this talk

➔ Windows Service Accounts usually holds “impersonation 

privileges” which can be (easily) abused for privilege 

escalation once compromised

➔ “Rotten/JuicyPotato” exploits do not work anymore in 

latest Windows releases

➔ Any chance to get our potatoes alive and kicking, again?
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Windows Services

➔ What is a service?
◆ Particular process that runs in a separate Session and without user 

interaction.

◆ The classic Linux daemon, but for windows

➔ Why so important?
◆ Most of the Windows core components are run through a service

◆ DCOM, RPC, SMB, IIS, MSSQL, etc…

◆ Being daemons they will be an exposed attack surface

➔ Must be run with a Service Account User

➔ Configurations are under HKLM\SYSTEM\CurrentControlSet\Services



Windows Services
➔ How you recognize a service?

◆ Child process of services.exe (SCM)

◆ Process in Session 0

◆ From source code perspective: 

SvcInstall(), SvcMain(), 

SvcCtrlHandler(), SvcInit()… 

➔ How the NT Kernel recognize a 

service…
◆ S-1-5-6 Service

A group that includes all security 

principals that have logged on as a 

service. 



Windows Service Accounts 

➔ Windows Service Accounts have the password managed 

internally by the operating system

➔ Service Account types:
◆ Local System

◆ Local Service / Network Service Accounts

◆ Managed Service & Virtual Accounts

➔ Allowed to logon as a Service, logon type 5



Windows Service Accounts 



Windows Service Hardening (WSH)

➔ Until Windows Server 2003/XP every service was run as 

SYSTEM

➔ If you compromise a service you have compromised also the 

whole machine

➔ WSH to the rescue, at least that was the initial goal

➔ Great references by @tiraniddo [1] and @cesarcer [2]

[1] https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html

[2] https://downloads.immunityinc.com/infiltrate-archives/WindowsServicesHacking.pdf



Windows Service Hardening (WSH)

➔ Limited Service Accounts
◆ Introduction of the LOCAL SERVICE and NETWORK SERVICE accounts, less 

privileges than SYSTEM account.

➔ Reduced Privileges
◆ Services run only with specified privileges (least privilege)

➔ Write-Restricted Token

➔ Per-Service SID
◆ Service access token has dedicated and unique owner SID. No SID 

sharing across different services

➔ Session 0 Isolation

➔ System Integrity Level

➔ UIPI (User interface privilege isolation)



Impersonation

➔ “Impersonation is the ability of a thread to execute in a security context 

that is different from the context of the process that owns the thread.” 

MSDN

➔ Basically it allows to execute code on behalf of another user

➔ Token forged by impersonation are called secondary token or impersonation 

token

➔ Your process must hold the SeImpersonatePrivilege (“Impersonate a Client 

After Authentication”) to perform the impersonation

➔ It is the prerequisite for all the techniques will be shown



Impersonation

➔ Impersonation assigns a token to a thread, replace the token used in 

access checks for the majority of system calls [1]

[1] https://conference.hitb.org/hitbsecconf2017ams/materials/D2T3%20-%20James%20Forshaw%20-

%20Introduction%20to%20Logical%20Privilege%20Escalation%20on%20Windows.pdf
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Impersonation

➔ Impersonation is specific to threads

➔ Creating a process with a specific token gives more freedom 

➔ It is possible to create a process with a specific token using 

only the SeImpersonatePrivilege, but...

➔ It has nothing to do with the internal working of Impersonation. 

It just make an RPC call on the seclogon service. 

CreateProcessWithToken() –> SlrCreateProcessWithLogon() that 

calls internally CreateProcessAsUser()

➔ You can also call directly CreateProcessAsUser() without using 

the seclogon service. You need SeAssignPrimaryToken privilege 

that is normally assigned to various windows service accounts



Impersonation

➔ You are wondering now: what is the link between Services and the 

impersonation privileges?





From Service to SYSTEM



From Service to System: Disclaimer

➔ We tried to report this kind of vulnerabilities to MS 

before the release, but this is the result…

➔ What MS think about the impersonation privileges [1]:
◆ 22/11/2019 – MS answered “game over”, stating that elevating from a 

Local Service process (with SeImpersonate) to SYSTEM is an “expected 

behavior”, referring to this MS public page

➔ So after the first attempt to report, no one bothered 

anymore MS for those specific issues… ¯\_(ツ)_/¯

[1] Disclosure timeline in https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/impersonate-a-client-after-authentication


Side note: The easiest way to EOP from Service to SYSTEM

➔ Did you know? Starting from Windows 10 1803/Win Server 

2019 up to September 2019 Security Update it was possible 

for “SERVICE” accounts to abuse “UsoSvc” and get SYSTEM 

priv!! 

➔ Once you had compromised a Service account, all you 

needed to do from a cmd/powershell was:

sc stop UsoSvc & sc configure UsoSvc binpath= c:\myevilprog.exe & sc start UsoSvc



Side note: The easiest way to EOP from Service to SYSTEM



RogueWinRm

➔ Release Date: 6 December 2019

➔ Authors: @decoder_it - @splinter_code – 0xEA (@DonkeysTeam)

➔ Brief Description
◆ Force the BITS service to authenticate to a Rogue WinRm HTTP server 

in a NTLM challenge/response authentication resulting in a SYSTEM 

token stealing.

➔ Requirements
◆ WinRm Port (5985) available for listening

◆ By default impact only Windows clients, no Windows Servers



RogueWinRm

➔ When a BITS object get initialized a weird behavior 

happens

➔ BITS object could be created through a DCOM activation 

using its CLSID or by a simple “bitsadmin /list”



RogueWinRm

➔ RogueWinRm is a minimal webserver that performs NTLM 

authentication over HTTP [1]

[1] https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/



RogueWinRm



Network Service Impersonation

➔ Release Date: 25 April 2020

➔ Authors: @tiraniddo

➔ Brief Description
◆ If you can trick the “Network Service” account to write to a named 

pipe over the “network” and are able to impersonate the pipe, you can 

access the tokens stored in RPCSS service (which is running as 

Network Service and contains a pile of treasures) and “steal” a 

SYSTEM token.

➔ Requirements
◆ SeImpersonate privilege is not enough. You need also a token from 

“Network Service” account

◆ SMB running



Network Service Impersonation

➔ Lsass.exe has an internal mechanism to save and reuse

created tokens

➔ This can be abused in the case of network authentication 

to get a token with a more powerful LUID

➔ Only local network authentication are impacted by this 

behavior

➔ SMB supports local network authentication + Named pipes 

supports network authentication token = the perfect 

combination

➔ From NETWORK SERVICE run a pipe server and impersonate a 

loopback authentication over smb, magic will happen



Network Service Impersonation

Blog: https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html

Blog: https://decoder.cloud/2020/05/04/from-network-service-to-system/

POC: https://github.com/decoder-it/NetworkServiceExploit



PrintSpoofer

➔ Release Date: 2 May 2020

➔ Authors: @itm4n - @jonasLyk

➔ Brief Description
◆ An exposed RPC interface of the Print Spooler service is vulnerable 

to a path validation bypass in which you can trick the service to 

write to a controlled named pipe and then impersonating the 

connection resulting in a SYSTEM token stealing.

➔ Requirements
◆ Print Spooler Service must be running

◆ SMB Running



PrintSpoofer

➔ It abuses a rpc function of the spooler service, 

RpcRemoteFindFirstPrinterChangeNotificationEx()

➔ This function take a hostname as input

➔ If you specify the ‘/’ char in the hostname it will be converted 

in a ‘\’ resulting in a prepend for the pipe path used

➔ spoolsv.exe will use an arbitrary named pipe instead of the 

\\.\pipe\spoolss that is normally used

➔ i.e. specifying as input \\%COMPUTERNAME%/rand will result in a 

write as SYSTEM to nonexistent pipe \\.\pipe\rand\pipe\spoolss 

➔ It runs a pipe server on that free pipe and impersonate the 

connection from spoolsv. Enjoy the SYSTEM privs :D



PrintSpoofer

Blog: https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/

POC: https://github.com/itm4n/PrintSpoofer



RoguePotato

➔ Release Date: 11 May 2020

➔ Authors: @decoder_it - @splinter_code

➔ Brief Description
◆ Tricks the DCOM activation service in contacting a remote Rogue Oxid 

Resolver to force RPCSS writing to a controlled named pipe getting a 

NETWORK SERVICE token. After that it uses Token Kidnapping to steal a 

SYSTEM token from the process space of RPCSS

➔ Requirements
◆ The machine can make an outbound connection on port 135

◆ SMB Running

◆ DCOM Running



RoguePotato: the attack flow 1/4

➔ Tricking the DCOM activation service [1]
▪ Pick a CLSID to create an object activation request

▪ Once the object is created, initializes it to a marshalled object

▪ In the marshalled object (OBJREF_STANDARD) we specify the string 

binding for a remote oxid resolver. This will be the ip of our remote 

rogue oxid resolver

▪ When the COM object will unmarshal the object it will trigger an oxid

resolution request to our rogue oxid resolver in order to locate the 

binding information of the object

[1] Credits to @tiraniddo --> https://bugs.chromium.org/p/project-zero/issues/detail?id=325



RoguePotato: The remote rogue OXID Resolver

➔ “OXID resolution: The process of obtaining the remote 

procedure call (RPC) binding information that is required 

to communicate with the object exporter.” MSDN (think it 

as sort of DNS)

➔ MS OXID resolver is implemented through the RPC interface 

IObjectExporter

➔ It listens on port 135 with IPID (interface pointer 

identifier) 99fcfec4-5260-101b-bbcb-00aa0021347a

➔ Some interesting RPC methods we could abuse?



RoguePotato: The remote rogue OXID Resolver



RoguePotato: The remote rogue OXID Resolver



RoguePotato: The remote rogue OXID Resolver

➔ Create the .idl file to generate IObjectExporter .c 

server stub (midl.exe) [1]

➔ Register the rpc server interface (RpcServerRegisterIf2), 

register the endpoint information (RpcEpRegister) and 

listen for incoming connection (RpcServerListen)

➔ Write the code for the ResolveOxid2 function to return 

our controlled named pipe [2]

➔ Instead of using the towerId ncacn_ip_tcp force RPC over 

SMB with the towerId ncacn_np. But there is a problem…

[1] https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/49aef5a4-f0ad-4478-abb5-cb9446dc13c6

[2] https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/50889dd8-1960-49ca-a444-6212a73dc397



RoguePotato: The remote rogue OXID Resolver

➔ When using the ncacn_np the named pipe \pipe\epmapper

must be used (by protocol design)



RoguePotato: the attack flow 2/4

➔ What if we borrow the technique from PrintSpoofer exploit 

and use it to control the name of the named pipe used?

➔ How? “Just” returning the following string in the 

ResolveOxid2() response from our Rogue Oxid Resolver:

ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]



RoguePotato: the attack flow 2/4



RoguePotato: the attack flow 3/4

➔ Create a named pipe listener on 

\\.\pipe\roguepotato\pipe\epmapper and wait for the 

connection from RPCSS, then we call 

ImpersonateNamedPipeClient() to impersonate the client 

➔ Should we expect a surprise?



RoguePotato: the attack flow 3/4



RoguePotato: the attack flow 4/4

➔ The last step of the chain, the Token Kidnapping [1]

➔ Get the PID of the “RPCSS” service

➔ Open the process, list all handles and for each handle 

try to duplicate it and get the handle type

➔ If handle type is “Token” and token owner is SYSTEM, try 

to impersonate and launch a process with 

CreateProcessAsUser() or CreateProcessWithToken()

[1] Credits to @cesarcer --> https://dl.packetstormsecurity.net/papers/presentations/TokenKidnapping.pdf



RoguePotato: SYSTEM shell popping :D

SYSTEM feeling

Blog: https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/

POC: https://github.com/antonioCoco/RoguePotato



Juicy2

➔ Release Date: 30 May 2020

➔ Authors: @decoder_it - @splinter_code

➔ Brief Description
◆ Tricks the DCOM activation service in contacting a remote Rogue Oxid 

Resolver to force a specific DCOM component to authenticate to an 

arbitrary RPC server, resulting in a SYSTEM token stealing

➔ Requirements
◆ The machine can make an outbound connection on port 135

◆ DCOM Running

◆ By default impact only Windows clients, no Windows Servers



Juicy2



Juicy2



Juicy2



Juicy2



Juicy2

➔ Just an Identification token, pretty useless

➔ Why this behavior?
typedef struct _RPC_SECURITY_QOS {

unsigned long Version; 

unsigned long Capabilities; 

unsigned long IdentityTracking; 

unsigned long ImpersonationType; 

} RPC_SECURITY_QOS, *PRPC_SECURITY_QOS;

➔ By default: ImpersonationType=RPC_C_IMP_LEVEL_IDENTIFY

➔ Can be override by controlling the regkey

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost



Juicy2

➔ Any CLSID that override this behavior?

ActiveX Installer service, no Windows Server 

Blog: https://decoder.cloud/2020/05/30/the-impersonation-game/



Chimichurri Reloaded

➔ Release Date: 1 June 2020

➔ Authors: @itm4n

➔ Brief Description
◆ Tricks the Service Tracing into writing a log on a malicious local 

WebDAV server resulting in a challenge/response authentication over 

HTTP as SYSTEM. Once stolen the token it will create a new process as 

SYSTEM

➔ Requirements
◆ WebClient service installed. By default only on Windows clients, no 

Windows servers

Blog: https://itm4n.github.io/chimichurri-reloaded/



Mitigations 1/3

➔ Disable DCOM

➔ Disable SMB



Mitigations 2/3

➔ “Empirically Assessing Windows Service Hardening” by 

@tiraniddo [1]

➔ Change the sid type of the service to “WRITE RESTRICTED”

sc.exe sidtype SampleService restricted

➔ Remove the impersonation privileges by specifying the 

only required privileges for the service(Least-Privilege)

sc.exe privs SampleService SeChangeNotifyPrivilege/SeCreateGlobalPrivilege

[1] https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html



Mitigations 3/3

➔ Use virtual service accounts

➔ Change the account in which a service will run, to use a 

virtual account specify “NT SERVICE\ServiceName”

sc.exe config SampleService obj= "NT SERVICE\SampleService"

➔ Remove the impersonation privileges by specifying the 

only required privileges for the service(Least-Privilege)

sc.exe privs SampleService SeChangeNotifyPrivilege/SeCreateGlobalPrivilege



Mitigations 3/3



Conclusion

➔ For Sysadmins: never rely on default WSH configuration 

for segregating the services. Remember that also MS do 

not consider it a security boundary but just a “safety 

boundary”?????

➔ For Penetration Testers: always run “whoami /priv” when 

you land to a new server and check for the SeImpersonate

privilege. It’s a 1 click privesc to SYSTEM :D

➔ For service providers: do not sell web servers (IIS) by 

creating a new virtual host on a shared machine, please…

➔ “if you have Impersonation privileges you are SYSTEM!” 

cit. @decoder_it



Thank You
splintercod3@gmail.com

@splinter_code


