
Windows Privilege Escalations:
Still abusing Service Accounts to get SYSTEM

privileges
Antonio Cocomazzi, Rome, September 27th 2020

whoami

➔ System Engineer @ SentinelOne

➔ Passionate about IT security and

constantly trying to learn and

experiment new cool stuff,

especially on Windows Systems

➔ CTF player and proud member of

@DonkeysTeam

@splinter_code

@antonioCoco

Why this talk

➔ Windows Service Accounts usually holds “impersonation

privileges” which can be (easily) abused for privilege

escalation once compromised

➔ “Rotten/JuicyPotato” exploits do not work anymore in

latest Windows releases

➔ Any chance to get our potatoes alive and kicking, again?

Agenda
- Windows Services

- Windows Service Accounts

- WSH (Windows Service Hardening)

- Impersonation

- From Service to System

- RogueWinRm

- Network Service Impersonation

- PrintSpoofer

- RoguePotato

- Juicy2

- Chimichurri Reloaded

- Mitigations

- Conclusion

Windows Services

➔ What is a service?
◆ Particular process that runs in a separate Session and without user

interaction.

◆ The classic Linux daemon, but for windows

➔ Why so important?
◆ Most of the Windows core components are run through a service

◆ DCOM, RPC, SMB, IIS, MSSQL, etc…

◆ Being daemons they will be an exposed attack surface

➔ Must be run with a Service Account User

➔ Configurations are under HKLM\SYSTEM\CurrentControlSet\Services

Windows Services
➔ How you recognize a service?

◆ Child process of services.exe (SCM)

◆ Process in Session 0

◆ From source code perspective:

SvcInstall(), SvcMain(),

SvcCtrlHandler(), SvcInit()…

➔ How the NT Kernel recognize a

service…
◆ S-1-5-6 Service

A group that includes all security

principals that have logged on as a

service.

Windows Service Accounts

➔ Windows Service Accounts have the password managed

internally by the operating system

➔ Service Account types:
◆ Local System

◆ Local Service / Network Service Accounts

◆ Managed Service & Virtual Accounts

➔ Allowed to logon as a Service, logon type 5

Windows Service Accounts

Windows Service Hardening (WSH)

➔ Until Windows Server 2003/XP every service was run as

SYSTEM

➔ If you compromise a service you have compromised also the

whole machine

➔ WSH to the rescue, at least that was the initial goal

➔ Great references by @tiraniddo [1] and @cesarcer [2]

[1] https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html

[2] https://downloads.immunityinc.com/infiltrate-archives/WindowsServicesHacking.pdf

Windows Service Hardening (WSH)

➔ Limited Service Accounts
◆ Introduction of the LOCAL SERVICE and NETWORK SERVICE accounts, less

privileges than SYSTEM account.

➔ Reduced Privileges
◆ Services run only with specified privileges (least privilege)

➔ Write-Restricted Token

➔ Per-Service SID
◆ Service access token has dedicated and unique owner SID. No SID

sharing across different services

➔ Session 0 Isolation

➔ System Integrity Level

➔ UIPI (User interface privilege isolation)

Impersonation

➔ “Impersonation is the ability of a thread to execute in a security context

that is different from the context of the process that owns the thread.”

MSDN

➔ Basically it allows to execute code on behalf of another user

➔ Token forged by impersonation are called secondary token or impersonation

token

➔ Your process must hold the SeImpersonatePrivilege (“Impersonate a Client

After Authentication”) to perform the impersonation

➔ It is the prerequisite for all the techniques will be shown

Impersonation

➔ Impersonation assigns a token to a thread, replace the token used in

access checks for the majority of system calls [1]

[1] https://conference.hitb.org/hitbsecconf2017ams/materials/D2T3%20-%20James%20Forshaw%20-

%20Introduction%20to%20Logical%20Privilege%20Escalation%20on%20Windows.pdf

Impersonation
Compromised Service

Primary Token

User1

Main Thread

Impersonation Token

SeImpersonate…

Exploit

Primary Token

User1
SeImpersonate…

Create

Process()

Copy

Token

Inherit Token

ImpersonateLoggedOnUser()

void

Main Thread

Impersonation Token

void

Impersonation
Compromised Service

Primary Token

User1

Main Thread

Impersonation Token

SeImpersonate…

Exploit

Main Thread

Primary Token

User1
SeImpersonate…

Create

Process()

Copy

Token

Inherit Token

ImpersonateLoggedOnUser()

void

Impersonation Token

user2

Impersonation
Compromised Service

Primary Token

User1

Main Thread

Impersonation Token

SeImpersonate…

Exploit

Main Thread

Primary Token

User1
SeImpersonate…

Create

Process()

Copy

Token

ImpersonateLoggedOnUser()

void

Impersonation Token

user2

Impersonation
Compromised Service

Primary Token

User1

Main Thread

Impersonation Token

SeImpersonate…

Exploit

Main Thread

Primary Token

User1
SeImpersonate…

Create

Process()

Copy

Token

ImpersonateLoggedOnUser()

void

Impersonation Token

user2

Privileged Process

Primary Token

user2

Create

Process()

Impersonation
Compromised Service

Primary Token

User1

Main Thread

Impersonation Token

SeImpersonate…

Exploit

Main Thread

Primary Token

User1
SeImpersonate…

Create

Process()

Copy

Token

ImpersonateLoggedOnUser()

void

Impersonation Token

user2

Privileged Process

Primary Token

user2

Create

Process()

COMMON MISTAKE!

Impersonation

➔ Impersonation is specific to threads

➔ Creating a process with a specific token gives more freedom

➔ It is possible to create a process with a specific token using

only the SeImpersonatePrivilege, but...

➔ It has nothing to do with the internal working of Impersonation.

It just make an RPC call on the seclogon service.

CreateProcessWithToken() –> SlrCreateProcessWithLogon() that

calls internally CreateProcessAsUser()

➔ You can also call directly CreateProcessAsUser() without using

the seclogon service. You need SeAssignPrimaryToken privilege

that is normally assigned to various windows service accounts

Impersonation

➔ You are wondering now: what is the link between Services and the

impersonation privileges?



From Service to SYSTEM

From Service to System: Disclaimer

➔ We tried to report this kind of vulnerabilities to MS

before the release, but this is the result…

➔ What MS think about the impersonation privileges [1]:
◆ 22/11/2019 – MS answered “game over”, stating that elevating from a

Local Service process (with SeImpersonate) to SYSTEM is an “expected

behavior”, referring to this MS public page

➔ So after the first attempt to report, no one bothered

anymore MS for those specific issues… ¯_(ツ)_/¯

[1] Disclosure timeline in https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/impersonate-a-client-after-authentication

Side note: The easiest way to EOP from Service to SYSTEM

➔ Did you know? Starting from Windows 10 1803/Win Server

2019 up to September 2019 Security Update it was possible

for “SERVICE” accounts to abuse “UsoSvc” and get SYSTEM

priv!!

➔ Once you had compromised a Service account, all you

needed to do from a cmd/powershell was:

sc stop UsoSvc & sc configure UsoSvc binpath= c:\myevilprog.exe & sc start UsoSvc

Side note: The easiest way to EOP from Service to SYSTEM

RogueWinRm

➔ Release Date: 6 December 2019

➔ Authors: @decoder_it - @splinter_code – 0xEA (@DonkeysTeam)

➔ Brief Description
◆ Force the BITS service to authenticate to a Rogue WinRm HTTP server

in a NTLM challenge/response authentication resulting in a SYSTEM

token stealing.

➔ Requirements
◆ WinRm Port (5985) available for listening

◆ By default impact only Windows clients, no Windows Servers

RogueWinRm

➔ When a BITS object get initialized a weird behavior

happens

➔ BITS object could be created through a DCOM activation

using its CLSID or by a simple “bitsadmin /list”

RogueWinRm

➔ RogueWinRm is a minimal webserver that performs NTLM

authentication over HTTP [1]

[1] https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/

RogueWinRm

Network Service Impersonation

➔ Release Date: 25 April 2020

➔ Authors: @tiraniddo

➔ Brief Description
◆ If you can trick the “Network Service” account to write to a named

pipe over the “network” and are able to impersonate the pipe, you can

access the tokens stored in RPCSS service (which is running as

Network Service and contains a pile of treasures) and “steal” a

SYSTEM token.

➔ Requirements
◆ SeImpersonate privilege is not enough. You need also a token from

“Network Service” account

◆ SMB running

Network Service Impersonation

➔ Lsass.exe has an internal mechanism to save and reuse

created tokens

➔ This can be abused in the case of network authentication

to get a token with a more powerful LUID

➔ Only local network authentication are impacted by this

behavior

➔ SMB supports local network authentication + Named pipes

supports network authentication token = the perfect

combination

➔ From NETWORK SERVICE run a pipe server and impersonate a

loopback authentication over smb, magic will happen

Network Service Impersonation

Blog: https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html

Blog: https://decoder.cloud/2020/05/04/from-network-service-to-system/

POC: https://github.com/decoder-it/NetworkServiceExploit

PrintSpoofer

➔ Release Date: 2 May 2020

➔ Authors: @itm4n - @jonasLyk

➔ Brief Description
◆ An exposed RPC interface of the Print Spooler service is vulnerable

to a path validation bypass in which you can trick the service to

write to a controlled named pipe and then impersonating the

connection resulting in a SYSTEM token stealing.

➔ Requirements
◆ Print Spooler Service must be running

◆ SMB Running

PrintSpoofer

➔ It abuses a rpc function of the spooler service,

RpcRemoteFindFirstPrinterChangeNotificationEx()

➔ This function take a hostname as input

➔ If you specify the ‘/’ char in the hostname it will be converted

in a ‘\’ resulting in a prepend for the pipe path used

➔ spoolsv.exe will use an arbitrary named pipe instead of the

\\.\pipe\spoolss that is normally used

➔ i.e. specifying as input \\%COMPUTERNAME%/rand will result in a

write as SYSTEM to nonexistent pipe \\.\pipe\rand\pipe\spoolss

➔ It runs a pipe server on that free pipe and impersonate the

connection from spoolsv. Enjoy the SYSTEM privs :D

PrintSpoofer

Blog: https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/

POC: https://github.com/itm4n/PrintSpoofer

RoguePotato

➔ Release Date: 11 May 2020

➔ Authors: @decoder_it - @splinter_code

➔ Brief Description
◆ Tricks the DCOM activation service in contacting a remote Rogue Oxid

Resolver to force RPCSS writing to a controlled named pipe getting a

NETWORK SERVICE token. After that it uses Token Kidnapping to steal a

SYSTEM token from the process space of RPCSS

➔ Requirements
◆ The machine can make an outbound connection on port 135

◆ SMB Running

◆ DCOM Running

RoguePotato: the attack flow 1/4

➔ Tricking the DCOM activation service [1]
▪ Pick a CLSID to create an object activation request

▪ Once the object is created, initializes it to a marshalled object

▪ In the marshalled object (OBJREF_STANDARD) we specify the string

binding for a remote oxid resolver. This will be the ip of our remote

rogue oxid resolver

▪ When the COM object will unmarshal the object it will trigger an oxid

resolution request to our rogue oxid resolver in order to locate the

binding information of the object

[1] Credits to @tiraniddo --> https://bugs.chromium.org/p/project-zero/issues/detail?id=325

RoguePotato: The remote rogue OXID Resolver

➔ “OXID resolution: The process of obtaining the remote

procedure call (RPC) binding information that is required

to communicate with the object exporter.” MSDN (think it

as sort of DNS)

➔ MS OXID resolver is implemented through the RPC interface

IObjectExporter

➔ It listens on port 135 with IPID (interface pointer

identifier) 99fcfec4-5260-101b-bbcb-00aa0021347a

➔ Some interesting RPC methods we could abuse?

RoguePotato: The remote rogue OXID Resolver

RoguePotato: The remote rogue OXID Resolver

RoguePotato: The remote rogue OXID Resolver

➔ Create the .idl file to generate IObjectExporter .c

server stub (midl.exe) [1]

➔ Register the rpc server interface (RpcServerRegisterIf2),

register the endpoint information (RpcEpRegister) and

listen for incoming connection (RpcServerListen)

➔ Write the code for the ResolveOxid2 function to return

our controlled named pipe [2]

➔ Instead of using the towerId ncacn_ip_tcp force RPC over

SMB with the towerId ncacn_np. But there is a problem…

[1] https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/49aef5a4-f0ad-4478-abb5-cb9446dc13c6

[2] https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/50889dd8-1960-49ca-a444-6212a73dc397

RoguePotato: The remote rogue OXID Resolver

➔ When using the ncacn_np the named pipe \pipe\epmapper

must be used (by protocol design)

RoguePotato: the attack flow 2/4

➔ What if we borrow the technique from PrintSpoofer exploit

and use it to control the name of the named pipe used?

➔ How? “Just” returning the following string in the

ResolveOxid2() response from our Rogue Oxid Resolver:

ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]

RoguePotato: the attack flow 2/4

RoguePotato: the attack flow 3/4

➔ Create a named pipe listener on

\\.\pipe\roguepotato\pipe\epmapper and wait for the

connection from RPCSS, then we call

ImpersonateNamedPipeClient() to impersonate the client

➔ Should we expect a surprise?

RoguePotato: the attack flow 3/4

RoguePotato: the attack flow 4/4

➔ The last step of the chain, the Token Kidnapping [1]

➔ Get the PID of the “RPCSS” service

➔ Open the process, list all handles and for each handle

try to duplicate it and get the handle type

➔ If handle type is “Token” and token owner is SYSTEM, try

to impersonate and launch a process with

CreateProcessAsUser() or CreateProcessWithToken()

[1] Credits to @cesarcer --> https://dl.packetstormsecurity.net/papers/presentations/TokenKidnapping.pdf

RoguePotato: SYSTEM shell popping :D

SYSTEM feeling

Blog: https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/

POC: https://github.com/antonioCoco/RoguePotato

Juicy2

➔ Release Date: 30 May 2020

➔ Authors: @decoder_it - @splinter_code

➔ Brief Description
◆ Tricks the DCOM activation service in contacting a remote Rogue Oxid

Resolver to force a specific DCOM component to authenticate to an

arbitrary RPC server, resulting in a SYSTEM token stealing

➔ Requirements
◆ The machine can make an outbound connection on port 135

◆ DCOM Running

◆ By default impact only Windows clients, no Windows Servers

Juicy2

Juicy2

Juicy2

Juicy2

Juicy2

➔ Just an Identification token, pretty useless

➔ Why this behavior?
typedef struct _RPC_SECURITY_QOS {

unsigned long Version;

unsigned long Capabilities;

unsigned long IdentityTracking;

unsigned long ImpersonationType;

} RPC_SECURITY_QOS, *PRPC_SECURITY_QOS;

➔ By default: ImpersonationType=RPC_C_IMP_LEVEL_IDENTIFY

➔ Can be override by controlling the regkey

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

Juicy2

➔ Any CLSID that override this behavior?

ActiveX Installer service, no Windows Server 

Blog: https://decoder.cloud/2020/05/30/the-impersonation-game/

Chimichurri Reloaded

➔ Release Date: 1 June 2020

➔ Authors: @itm4n

➔ Brief Description
◆ Tricks the Service Tracing into writing a log on a malicious local

WebDAV server resulting in a challenge/response authentication over

HTTP as SYSTEM. Once stolen the token it will create a new process as

SYSTEM

➔ Requirements
◆ WebClient service installed. By default only on Windows clients, no

Windows servers

Blog: https://itm4n.github.io/chimichurri-reloaded/

Mitigations 1/3

➔ Disable DCOM

➔ Disable SMB

Mitigations 2/3

➔ “Empirically Assessing Windows Service Hardening” by

@tiraniddo [1]

➔ Change the sid type of the service to “WRITE RESTRICTED”

sc.exe sidtype SampleService restricted

➔ Remove the impersonation privileges by specifying the

only required privileges for the service(Least-Privilege)

sc.exe privs SampleService SeChangeNotifyPrivilege/SeCreateGlobalPrivilege

[1] https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html

Mitigations 3/3

➔ Use virtual service accounts

➔ Change the account in which a service will run, to use a

virtual account specify “NT SERVICE\ServiceName”

sc.exe config SampleService obj= "NT SERVICE\SampleService"

➔ Remove the impersonation privileges by specifying the

only required privileges for the service(Least-Privilege)

sc.exe privs SampleService SeChangeNotifyPrivilege/SeCreateGlobalPrivilege

Mitigations 3/3

Conclusion

➔ For Sysadmins: never rely on default WSH configuration

for segregating the services. Remember that also MS do

not consider it a security boundary but just a “safety

boundary”?????

➔ For Penetration Testers: always run “whoami /priv” when

you land to a new server and check for the SeImpersonate

privilege. It’s a 1 click privesc to SYSTEM :D

➔ For service providers: do not sell web servers (IIS) by

creating a new virtual host on a shared machine, please…

➔ “if you have Impersonation privileges you are SYSTEM!”

cit. @decoder_it

Thank You
splintercod3@gmail.com

@splinter_code

